1. CAN 总线
CAN-BUS 即 CAN 总线技术,全称为“控制器局域网总线技术(Controller Area Network-BUS)”。Can-Bus 总线技术最早被用于飞机、坦克等武器电子系统的通讯联络上。将这种技术用于民用汽车最早起源于欧洲,在汽车上这种总线网络用于车上各种传感器数据的传递。汽车上面布满了各种控制单元,越是高级的汽车,其控制单元越多,控制系统越复杂。每个控制单元都可看做一台独立的电脑,它可以接受信息,同时能对各种信息进行处理、分析,然后发出一个指令。比如发动机控制单元会接受来自进气压力传感器、发动机温度传感器、油门踏板位置传感器、发动机转速传感器等等的信息,在经过分析和处理后会发送相应的指令来控制喷油嘴的喷油量、点火提前角等等,其它控制单元的工作原理也都类似。
部分汽车的控制单元之间的所有信息都通过两根数据线进行交换,这种数据线也叫 CAN 数据总线。通过该种方式,所有的信息,不管信息容量的大小,都可以通过这两条数据线进行传递,这种方式充分的提高了整个系统的运行效率。
总线系统之所以称作为 CAN-BUS,其实也是因为它的工作原理与运行中的公共汽车很类似。每个站点相当于一个控制单元,而行驶路线则是 CAN 数据总线,CAN 数据总线上传递的是数据,而公共汽车上承载的是乘客。某个控制单元接收到负责向它发送数据的传感器的信息后,经过分析处理会采取相应措施,并将此信息发送到总线系统上。这样此信息会在总线系统上进行传递,每个与总线系统连接的控制单元都会接收到此信息,如果此信息对自己有用则会存储下来,如果对其无用,则会进行忽略。
目前汽车上的 CAN 数据总线连接方式主要有3种,一种是用于驱动系统的高速 CAN 总线,速率可达到 500kb/s,另一种是用于车身系统的低速 CAN 总线,速率为 100kb/s。当然对于中高级轿车还有一些如娱乐系统或智能通讯系统的总线,它们的传输速率更高,可以超过 1Mb/s, 称之为FD CAN。
CAN 总线的优势:
比传统布线方式要节省线束,降低了车身重量,同时优化了车身的布线方式。
以 CAN 总线方式连接的控制单元中有一个发生故障,其它控制单元仍可发送各自的数据,互不影响。
CAN 数据总线为双线制,如果有一条发生故障,CAN 系统会转为单线运行模式,提高了整车的稳定性。
CAN 系统的双线在实际中是像“麻花”一样缠绕在一起的,这样可以有效的防止电磁波的干扰和向外辐射。
基于 CAN 总线系统可以实现更丰富的车身功能。
2. LIN 总线
LIN 总线是针对汽车分布式电子系统而定义的一种低成本的串行通讯网络,是对控制器区域网络(CAN)等其它汽车多路网络的一种补充,适用于对网络的带宽、性能或容错功能没有过高要求的应用。LIN 总线是基于 SCI(UART)数据格式,采用单主控制器 / 多从设备的模式,是 UART 中的一种特殊情况。
LIN 总线是面向汽车低端分布式应用的低成本,低速串行通信总线。它的目标是为现有汽车网络提供辅助功能,在不需要 CAN 总线的带宽和多功能的场合使用,降低成本。
LIN 联盟成立于 1999 年,并发布了 LIN01.0 版本。最初的成员有奥迪、宝马、克莱斯勒、摩托罗拉、博世、大众和沃尔沃等。
LIN 总线相对于 CAN 的成本节省主要是由于采用单线传输、硅片中硬件或软件的低实现成本和无需在从属节点中使用石英或陶瓷谐振器。这些优点是以较低的带宽和受局限的单宿主总线访问方法为代价的。
LIN 总线上的所有通讯都由主机节点中的主机任务发起,主机任务根据进度表来确定当前的通讯内容,发送相应的帧头,并为报文帧分配帧通道。总线上的从机节点接收帧头之后,通过解读标识符来确定自己是否应该对当前通讯做出响应、做出何种响应。基于这种报文滤波方式,LIN 可实现多种数据传输模式,且一个报文帧可以同时被多个节点接收利用。
LIN 总线是 CAN 总线的副手。未来,或许将随着 CAN 总线一起退出历史的舞台。
3. FlexRay
FlexRay 是一种用于汽车的高速、可确定性的,具备故障容错能力的总线技术,它将事件触发和时间触发两种方式相结合,具有高效的网络利用率和系统灵活性特点,可以作为新一代汽车内部网络的主干网络。FlexRay 是汽车工业的事实标准(facto standard)。
Flexray 的拓扑结构多样,既可以像 CAN 总线一样使用线型结构,也可以使用星型结构。中心节点负责转发信息。当除中心节点外的某个节点损坏或线路故障时,中心节点可以断开与该节点的通信。但当中心节点损坏时,整个总线便无法工作。可以将多个星型总线的中心节点连接起来。
Flexray 和 CAN线最本质的区别是总线分配的方式不同。CAN 总线是采用 CSMA/CA 机制。各节点会一直监听总线,发现总线空闲时便开始发送数据。Flexray 用的是 TDMA(Time Division Multiple Access) 和 FTDMA(Flexible Time Division Multiple Access)两种方法。Flexray 将一个通信周期分为静态部分、动态部分、网络空闲时间。静态部分使用 TDMA 方法,每个节点会均匀分配时间片,每个节点只有在属于自己的时间片里面才能发送消息,即使某个节点当前无消息可发,该时间片依然会保留(也就造成了一定的总线资源浪费)。在动态部分使用 FTDMA 方法,会轮流问询每个节点有没有消息要发,有就发,没有就跳过。静态部分用于发送需要经常性发送的重要性高的数据,动态部分用于发送使用频率不确定、相对不重要的数据。
Flexray 相比较于 CAN 总线要复杂许多,安全性相对较高。但是,Flexray 总线也有其弊端,就是造价成本过高,除了德系车厂在量产车上使用过,其他国家极少见。随着汽车电子化程度的增加,对总线带宽的要求也越来越高。用 Flexray 来取代原来普遍使用的 CAN 总线是不现实的,因为成本实在太高。
4. 以太网
新的汽车功能,如自动泊车系统、车道偏离检测系统、盲点检测和高级信息娱乐系统等引发了对新的数据总线需求。显然,未来我们需要的是更加开放、高速,且易于与其他电子系统或者设备集成的车载网络,同时有助于减少功耗,线束重量和部署成本。
作为 AVB 协议的扩展,车载时间敏感网络(TSN, Time-Sensitive Networking)则引入时间触发式以太网的相关技术,能高效的实现汽车控制类信息的传输。此外,1Gbit 速率通信标准的车载以太网同时还支持 POE(Power Over Ethernet)功能和高效节能以太网(EEE, Energy-Efficient Ethernet)功能,POE 功能可在双绞线传输数据的同时为连接的终端设备供电,省去了终端外接电源线,降低了供电的复杂度。
当前,以太网和 CAN 的连接通过以太网网关来实现。以太网目前还不是用来取代 CAN 的,主要还是应用在非 CAN 的部分。车载以太网不仅具备了适应 ADAS、影音娱乐、汽车网联化等所需要的带宽,而且还具备了支持未来更高性能的潜力(如自动驾驶时代所需要的更大数据传输)。它将成为实现多层面高速通信的基石,相对于 20 世纪 90 年代的控制器局域网(CAN)革命,它的规模将更大,意义将更深远。
除此之外,EMC车载检测还有LVDS信号,USB信号,模拟信号,在测试时候需要用到各种信号对应的光电转换器(超链接至光电转换器页面),来实现光电隔离,排除外部辅助设备对测试结果的干扰。